Compressed Sensing MRI with Multichannel Data Using GPUs

نویسندگان

  • Ching - Hua Chang
  • Jim Ji
چکیده

Abstract—Many clinical MRI applications can benefit from combining compressed sensing with multichannel receiver systems because of the potential to achieve reduced scan time and improve image qualities. However, it comes with the increased computational complexity, particular for advanced CS algorithms and with large number of channels. This paper presents a new CS-MRI reconstruction method for multichannel data based on graphics processing units (GPUs). Preliminary results show up to an order of magnitude of speed improvement with the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Multi-GPU Reconstruction of Dynamic Compressed Sensing MRI

Magnetic resonance imaging (MRI) is a widely used in-vivo imaging technique that is essential to the diagnosis of disease, but its longer acquisition time hinders its wide adaptation in time-critical applications, such as emergency diagnosis. Recent advances in compressed sensing (CS) research have provided promising theoretical insights to accelerate the MRI acquisition process, but CS reconst...

متن کامل

Multichannel Compressive Sensing MRI Using Noiselet Encoding

The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the...

متن کامل

Compressed sensing cardiac MRI exploiting spatio-temporal sparsity

Background Compressed Sensing (CS) is a theory with potential to reconstruct sparse images from a small number of random acquisitions. Particularly in MRI, CS aims to reconstruct the image from incomplete K-space data with minimum penalty on the image quality. The image is recovered from the sub-sampled K-space data, using image sparsity in a known sparse transform domain. Cardiac MRI has a spa...

متن کامل

Compressed Sensing-Based MRI Reconstruction Using Complex Double-Density Dual-Tree DWT

Undersampling k-space data is an efficient way to speed up the magnetic resonance imaging (MRI) process. As a newly developed mathematical framework of signal sampling and recovery, compressed sensing (CS) allows signal acquisition using fewer samples than what is specified by Nyquist-Shannon sampling theorem whenever the signal is sparse. As a result, CS has great potential in reducing data ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013